Toggle navigation
Datenzentrum
NP Hohe Tauern Tirol
Startseite
Daten
Publikationen
Projekte
Kontakt
Weitere Datenzentren
Nationalparks Austria NPA
NP Hohe Tauern Kaernten NPHTK
NP Hohe Tauern Salzburg NPHTS
NP Hohe Tauern Ueberregional NPHT
Auswahl anwenden
Eintrag Nr. 53825
Biodiversity assessments with machine learning based on forest inventory data
Übergeordnete Einträge
ID
TITEL
DATENTYP
AUTOR
JAHR
NPHT
Bibliographie NPHT
Project
Nationalparkrat Hohe Tauern
2013
Weitere Informationen
http://www.parcs.at/nphtt/pdf_public/2024/53825_20240117_092630_Diss_SophieEttefinal.pdf
Interne Informationen
-
Externe Informationen
-
Datentyp
Publication
Dateiname
Diss_Sophie Ette final.pdf
Pfad
I:\ALLE\1_LITERATUR
Alternativ/Online Name
-
Autor/Ersteller
DIin Jana-Sophie ETTE, BSc, MSc
Medium
File (digital)
Jahr
2023
Monat
0
Aufbewahrungsort
-
Bemerkungen/Beschreibung
Abstract Loss of biodiversity threatens the provision of ecosystem services and erodes the foundation of civilization. As biodiversity monitoring is lacking, extent of global biodiversity crises and thresholds for ecological collapses are largely unknown. Main reasons are severe knowledge gaps in indicator choice and aggregation next to limited availability of resilient long-term data. The aim of the doctoral project is to advance forest biodiversity assessments in Central Europe by applying machine learning. Following research questions are targeted: (1) Is actual European biodiversity monitoring reliable? (2) How can understanding of indicator-indicandum relationships be extended? (3) How can forest biodiversity be assessed reliable in Central Europe? Machine learning (''R randomForest'') provides new insights into indicatorindicandum relationships and intercorrelation within indicator sets. The approach demonstrates the forest stand characteristics indicated by forest structural biodiversity indicators and highlights the importance of indicator choice. Negative binary generalized models and generalized linear models prove that national biodiversity monitoring systems fail to report actual biodiversity loss in Europe. Hence, a novel Biodiversity Composite index (BCI) based on forest inventory and forest typing data is tested. BCI delivers high-resolution spatial maps of ecosystem-, species-, genetic-, and biodiversity. Advantages of the BCI approach are easy transferability, cost-efficiency, forest type rankings and a monitoring system in line with the Convention on Biological Diversity. In the case study Tyrol, Central Europe, coniferous forest types display higher potential to maintain biodiversity than deciduous and mixed forests. BCI supports decision-making in forest policy (e.g., cost-benefit analysis), biodiversity conservation (e.g., restoration priorities) and Sustainable Forest Management. Monitoring with BCI can help to halt forest biodiversity loss on the national scale.
Abgeleitete Einträge
-